Kinetics and Mechanism of the Addition of Substituted Anilines to β -Nitrostyrene

Bindu Varghese, Seema Kothari and Kalyan K. Banerji*

Department of Chemistry, J.N.V. University, Jodhpur 342 005, India

J. Chem. Research (M), 1998, 1853–1871

J. Chem. Research (S), 1998, 422–423

The addition of aniline to *trans*- β -nitrostyrene involved the formation of a zwitterionic intermediate in the rate-determining step followed by a rapid intramolecular proton transfer.

Mechanistic studies of nucleophilic additions to an activated carbon–carbon double bond have been a subject of many reports. However, the correlation of amine structure with the rate has received little attention. We have recently reported^{5,6} the correlation analysis of the reactivity in the addition of substituted benzylamines to ethyl α -cyanocinnamate and β -nitrostyrene. Here, we report the addition of a number of monosubstituted anilines to *trans*- β -nitrostyrene (NS). Attempts have been made to correlate the rate and structure in this reaction.

The reaction was studied under pseudo-first-order conditions in acetonitrile by keeping a large excess (×10 or greater) of aniline over NS. The reaction was followed spectrophotometrically by monitoring the decrease in [NS] at 311 nm for *ca.* 80% reaction. The pseudo-first-order rate constant, k_{obs} , was evaluated from the linear (r > 0.995) plots of log [NS] *vs.* time. The second order rate constants, k_2 , were obtained from the relation: $k_2 = k_{obs}/[aniline]$.

The product of the reaction, as characterized by its 1 H NMR spectrum, is 1-phenyl-1-phenylamino-2-nitroethane [PhCH(NHPh)CH₂NO₂]. The product was isolated in 88% yield. The overall reaction may be represented by eqn. (1).

$$ArNH_2 + PhCH = CH(NO_2) \rightarrow PhCH(NHAr)CH_2NO_2$$
 (1)

The reaction is first order with respect to both the amine and NS. The rates of addition of aniline and thirty-four monosubstituted anilines to NS were determined at different temperatures and the activation parameters were calculated.

The rate constants of the addition of *meta-* and *para*substituted anilines do not correlate well with the pK_a values of the anilinium cations, Hammett's σ , σ^+ or σ^- values. Similarly, the rate of the *ortho*-compounds failed to show significant correlation with either the rates of the corresponding *para*-compounds or σ_0 values of Tribble and Traynham.¹⁵ We have used the standard deviation (sd), the coefficient of determination (R^2 or r^2), Taft's¹⁰ parameter fand Exner's¹¹ parameter ψ , as measures of goodness of fit.

The rate constants of the addition of *meta-* and *para-* anilines did not correlate well with Taft's dual substituent parameter (DSP) equation.¹⁶

The rate constants, k_2 , were, therefore, analysed in terms of Charton's¹⁷ LDR eqn. (8).

$$\log k_2 = L\sigma_1 + D\sigma_d + R\sigma_e + h \tag{8}$$

Here, σ_1 is a localized (field and/or inductive) effective parameter, σ_d is the intrinsic delocalized (resonance) electrical effect parameter when active site electronic demand is minimal and σ_e represents the sensitivity of the substituent to change in electronic demand by the active site. The latter two substituent parameters are related by eqn. (9).

$$\sigma_{\rm D} = \eta \sigma_{\rm e} + \sigma_{\rm d} \tag{9}$$

Here η , represents the electronic demand of the reaction site which is given by $\eta = R/D$, and σ_D represents the For *ortho*-substituted compounds, it is necessary to account for the possibility of steric effects and Charton,¹⁷ therefore, modified the LDR equation to LDRS eqn. (10), where V is the well known Charton's steric parameter based on Van der Waals radii.¹⁸

$$\log k_2 = L\sigma_1 + D\sigma_d + R\sigma_e + SV + h \tag{10}$$

The rate constants of addition of the *meta-* and *para*substituted anilines showed excellent correlations with the LDR equation. All the three regression coefficients are negative indicating a positively polarized nitrogen centre in the transition state of the reaction. The positive value of η adds a negative increment to σ_d increasing the donor effect of the substituent where σ_d is negative and decreasing the acceptor effect where σ_d is positive. The substituent is, therefore, better able to stabilize a cationic reaction site. This also supports the presence of a positively polarized centre in the transition state of the rate-determining step.

The rates of the *ortho*-compounds showed a poor correlation with LDRS equation. However, excellent correlations were obtained if the rate constants of o-CO₂H and o-CO₂Et compounds were excluded. The deviations noted in the o-CO₂H and o-CO₂Et substituted anilines could be attributed to the moderate degree of anchimeric assistance provided by these groups to the reaction by stabilizing the positively polarized nitrogen in the transition state (**A**). The observed negative value of *S* indicates that the reaction is subjected to steric hindrance by the *ortho*-substituent. This may be due to steric hindrance of the *ortho*-substituent to the approach of anilines to NS.

The large negative polar reaction constants point to a transition state in which the aniline nitrogen is positively polarized. This suggests the formation of a zwitterionic species in the rate-determining step which then undergoes a rapid intramolecular proton transfer to form the ultimate product. The positive polarization of aniline nitrogen, in the transition state, is supported by the observed anchimeric assistance provided by o-CO₂H and o-CO₂Et groups. Scheme 1 accounts for the observed experimental results.

Scheme 1

delocalized electrical parameter of the diparametric LD equation.

^{*}To receive any correspondence.

Thanks are due to the University Grants Commission (India) for financial support.

Techniques used: ¹H NMR, spectrophotometry, correlation analysis

References: 19

Table 1: Rate constants for the addition of aniline to NS at 298 K

Table 2: Rate constants at different temperatures and activation parameters for the addition of substituted anilines to NS

Table 3: Correlation of the rates of addition of meta- and parasubstituted anilines to NS with dual substituent-parameters at 298 K

Table 4: Temperature dependence of the reaction constants for the addition of substituted anilines to NS

Received, 23rd April 1998; Accepted, 28th April 1998 Paper E/8/03142H

References cited in this synopsis

- 5 N. Jalani, S. Kothari and K. K. Banerji, Int. J. Chem. Kinet., 1996, 28, 165.
- 6 N. Jalani, S. Kothari and K. K. Benerji, Can. J. Chem., 1996, 74, 625.
- 10 S. Ehrenson, R. T. C. Brownlee and T. W. Taft, Prog. Phys. Org. Chem., 1973, 10, 1.
 11 O. Exner, Collect. Czech. Chem. Commun., 1966, 31, 3222.
- 15 M. T. Tribble and J. G. Traynham, J. Am. Chem. Soc., 1969, 91, 379
- 16 S. Dayal, S. Ehrenson and R. W. Taft, J. Am. Chem. Soc., 1972, 94, 9113.
- 17 M. Charton and B. Charton, Bull. Soc. Chim. Fr., 1988, 199 and references cited therein.
- 18 M. Charton, J. Org. Chem., 1975, 40, 407.